「常識」獲得に向け少しずつ進化するコンピュータービジョン、フェイスブックの最新研究

2017-08-24_00h03_35 IT総合
機械学習は、やり方を教えるデータさえあれば、あらゆることができる。これは必ずしも簡単なことではない。だから研究者は、AIに少々の「常識」を加える方法を常に模索している。常識があれば、AIが猫だと認識する前に500枚の猫の写真を見せる必要がなくなるからだ。Facebook(フェイスブック)の最新の研究は、データのボトルネックを減らす方向へ大きな一歩を踏み出した。
同社の強力なAI研究部門は、高度なコンピュータービジョンアルゴリズムなどの技術進歩や応用範囲拡大の方法に長年取り組んでいる。着実に前進しており、その成果は一般に他のリサーチコミュニティと共有されている。Facebookが特に追求している興味深い開発の1つは「半教師あり学習」と呼ばれるものだ。
一般にAIの訓練について考えるとき、上述の猫の500枚の写真のようなものを思い浮かべる。こうした画像はあらかじめ選り分けられ、ラベルが付されている(つまり、猫の輪郭が描かれていたり、猫の周りに四角い囲みをつけたり、単に猫が画像の中のどこかにいると示されていたりする)。こうして、機械学習システムが猫の認識プロセスを自動化するアルゴリズムを作れるようにする。当然のことながら、犬や馬で行いたい場合は、500枚の犬の写真、500枚の馬の写真などが必要となる。つまり、線形に応用範囲が広くなる。テクノロジーの世界では決して目にしたくない言葉だ。

リンク元

コメント

タイトルとURLをコピーしました